Большинство применений математики связано с измерением величин. Однако для этих целей натуральных чисел недостаточно: не всегда единица величины укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди пришли еще в глубокой древности: измерение длин, площадей, масс и других величин привело сначала к возникновению дробных чисел - получили рациональные числа, а в V в до н.э. математиками школы Пифагора было установлено, что существуют отрезки, длину которых при выбранной единице длины нельзя выразить рациональным числом. Позднее, в связи с решением этой проблемы, появились числа иррациональные. Рациональные и иррациональные числа назвали действительными. Строгое определение действительного числа и обоснование его свойств было дано в XIX в.
Взаимосвязи между различными множествами чисел (N, Z, Q и R) можно изобразить наглядно при помощи кругов Эйлера (рис 26).
Действительные числа – не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел, продолжается и сегодня – этого требует развитие различных наук и самой математики.
Знакомство учащихся с дробными числами происходит, как правило, в начальных классах. Затем понятие дроби уточняется и расширяется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы.
Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество положительных рациональных чисел, затем показывается, как его можно расширить до множества положительных действительных чисел, и, наконец, описывается расширение множества до множества R всех действительных чисел.