Чтобы множество Q+ положительных рациональных чисел являлось расширением множества N натуральных чисел, необходимо выполнение ряда условий.
Первое условие - это существование между N и Q+ отношения включения. Докажем, что N Q+.
Пусть длина отрезка х при единичном отрезке е выражается натуральным числом т. Разобьем единичный отрезок на п равных частей. Тогда n-ая часть единичного отрезка будет укладываться в отрезке х точно раз, т.е. длина отрезка х будет выражена дробью . Значит, длина отрезка х выражается и натуральным числом т, и положительным рациональным числом . Но это должно п быть одно и то же число. Поэтому целесообразно считать, что дроби вида являются записями натурального числа т. Следовательно, N Q+.
Так, например, натуральное число 6 можно представить в виде следующих дробей: , , , , , и т. д.
Отношение между множествами N и Q+ представлено на рисунке 28.
Числа, которые дополняют множество натуральных чисел до множества положительных рациональных, называются дробными.
Второе условие, которое должно быть выполнено при расширении множества натуральных чисел, - это согласованность операций, т.е. результаты арифметических действий, произведенных по правилам, существующим для натуральных чисел, должны совпадать с результатами действий над ними, но выполненных по правилам, сформулированным для положительных рациональных чисел. Нетрудно убедиться в том, что и это условие выполняется.
Пусть а и b - натуральные числа, - их сумма, полученная по правилам сложения в N. Вычислим сумму чисел а и b по правилу сложения в Q+. Так как , , то .
Убедиться в том, что второе условие выполняется и для других операций, можно аналогично или подсмотреть тут http://www.zaochnik.com/kontrol.html .
Третье условие, которое должно быть выполнено при расширении множества натуральных чисел - это выполнимость в Q+ операции, не всегда осуществимой в N. И это условие соблюдено: деление, которое не всегда выполняется в множестве N, в множестве Q+ выполняется всегда.
Сделаем еще несколько дополнений, раскрывающих взаимосвязи между натуральными и положительными рациональными числами.
1. Черту в записи дроби можно рассматривать как знак деления.
Действительно, возьмем два натуральных числа т и п и найдем их частное по правилу (4) деления положительных рациональных чисел:
Обратно, если дана дробь , то ее можно рассматривать как частное натуральных чисел т и п: .
2. Любую неправильную дробь можно представить либо в виде натурального числа, либо в виде смешанной дроби.
Пусть - неправильная дробь. Тогда т > п. Если т кратно п, то в этом случае дробь является записью натурального числа. Если число т не кратно п, то разделим т на п с остатком: , где . Подставим вместо т в запись и применим правило (1) сложения положительных рациональных чисел:
.
Так как , то дробь - правильная. Следовательно, неправильная дробь оказалась представленной в виде суммы натурального числа q и правильной дроби . Это действие называется выделением целой части из неправильной дроби. Например, .
Сумму натурального числа и правильной дроби принято записывать без знака сложения: т.е. вместо пишут и называют такую запись смешанной дробью.
Справедливо также утверждение: всякую смешанную дробь можно записать в виде неправильной дроби. Например:
.