В начальных классах ученики решают задачу: используя цифры 1, 2, 3 образовать всевозможные двузначные числа.
Путем перебора дети получают:
11 12 13
21 22 23
31 32 33
Запись каждого числа состоит из двух цифр, причем существенен порядок их следования. Например, из цифр 1, 2 образованы числа 12 и 21.
В том случае, когда важен порядок следования элементов множества, в математике говорят об упорядоченных наборах элементов. В данной задаче – упорядоченные пары (а; b), образованные из элементов а и b. Это (1; 2), (1; 3), (1; 4) и т.д. Первый элемент а называют первой координатой пары, элемент b – второй.
Значит, в нашей задаче мы оперировали множеством А={1, 2, 3} и образовывали всевозможные пары.
Рассмотрим другой пример. Пусть А={1, 2, 3}, B={4, 5}. Образуем всевозможные пары (а;b) так, что аА, bВ. Получим некоторое новое множество {(1; 5), (1; 4), (2; 4), (2; 5), (3; 4), (3; 5)}, элементами которого являются упорядоченные пары чисел. Это новое множество называют декартовым произведением множеств А и В.
Декартовым произведением множеств А и В называется множество пар, первая компонента которых принадлежит множеству А, вторая множеству В. Обозначают АВ. Таким образом АВ = {(x;y) | xA, yB}.
Операцию нахождения декартового произведения множеств А и В называют декартовым умножением этих множеств.
Рассмотрим следующий пример. Известно, что АВ={(2, 3), (2, 5), (2, 6), (3, 3), (3, 5), (3, 6)}. Установим, из каких элементов состоят множества А и В. Так как первая компонента пары декартового произведения принадлежит множеству А, а вторая – множеству В, то данные множества имеют следующий вид: А={2, 3}, B={3, 5, 6}.
Перечислим элементы, принадлежащие множеству АВ, если
А={a, b, c, d}, B=A. Декартово произведение АВ={(a, a), (a, b), (a, c),
(a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b) ,(d, c), (d, d)}.
Количество пар в декартовом прoизведении АВ будет равно произведению числа элементов множества А и числа элементов множества В: n(АВ)=n(A)n(B).
В математике рассматривают не только упорядоченные пары, но и наборы из трех, четырех и т.д. элементов. Такие упорядоченные наборы называют кортежами. Так, набор (1, 5, 6) есть кортеж длины 3, так как в нем три элемента.
Используя понятие кортежа, можно определить понятие декартового произведения n множеств.
Декартовым произведением множеств А, А,…, A называют множество кортежей длины n, образованных так, что первая компонента принадлежит множеству А, вторая – А, …, n-ая – множеству А: АА…A.
Пусть даны множества А={2, 3}; А={3, 4, 5}; A={7, 8}. Декартово произведение ААА={ (2, 3, 7), (2, 3, 8), (2, 4, 7), (2, 4, 8), (2, 5, 7),
(2, 5, 8),(3, 3, 7), (3, 4, 7), (3, 3, 8), (3, 4, 8), (3, 5, 7), (3, 5, 8)}.