Задача 19. Не производя вычислений, установите, делятся ли на 4 выражения: а) 132 + 360 + 536; б) 540 – 332; в) 2512·127.
Решение. а) так как на 4 делится каждое слагаемое, то сумма 132 + 360 + 536 делится на 4; б) так как уменьшаемое 540 делится на 4 и вычитаемое 332 делится на 4, то и разность 540 – 332 делится на 4; в) так как число 2512 делится на 4, то и произведение 2512·127 делится на 4.
Задача 20. Доказать, что произведение двух последовательных натуральных чисел n и n + 1 делится на 2.
Решение. Чтобы показать, что произведение n·(n + 1) делится на 2, надо рассмотреть две возможности:
1) n делится на 2, т.е. n = 2k. Тогда произведение n·(n + 1) будет иметь вид: 2k·(2k + 1). Это произведение делится на 2, так как первый множитель в нем делится на 2;
2) n не делится на 2, т.е. n = 2k + 1. Тогда произведение n·(n + 1) будет иметь вид: (2k + 1)·(2k + 2). Это произведение делится на 2, так как второй множитель делится на 2.
Задача 21. Доказать, что произведение трех последовательных натуральных чисел n, n + 1, n + 2 делится на 3.
Решение. Чтобы показать, что произведение n·(n + 1)·(n + 2) делится на 3, надо рассмотреть три возможности:
1) n делится на 3, т.е. n = 3k. Тогда n·(n + 1)·(n + 2) будет иметь вид: 3k·(3k + 1)·(3k + 2). Это произведение делится на 3, так как первый множитель в нем делится на 3;
2) n при делении на 3 дает в остатке 1, т.е. n = 3k + 1. Тогда произведение n·(n + 1)·(n + 2) будет иметь вид: (3k + 1)·(3k + 2)·(3k + 3). Это произведение делится на 3, т.к. третий множитель делится на 3;
3) n при делении на 3 дает в остатке 2, т.е. n = 3k + 2. Тогда произведение n·(n + 1)·(n + 2) будет иметь вид: (3k + 2)·(3k + 3)·(3k + 4). Это произведение делится на 3, т.к. второй множитель в нем делится на 3.
На основании задач 20 и 21 можно сформулировать утверждение, что произведение трех последовательных натуральных чисел делится на 6.
Задача 22. Доказать, что произведение четырех последовательных натуральных чисел n, n + 1, n + 2, n + 3 делится на 4.
Решение. Чтобы показать, что произведение n·(n + 1)·(n + 2)·(n + 3) делится на 4 надо рассмотреть четыре возможности:
1) n делится на 4, т.е. n = 4k. Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: 4k·(4k + 1)·(4k + 2)·(4k + 3). Это произведение делится на 4, так как первый множитель в нем делится на 4;
2) n при делении на 4 дает в остатке 1, т.е. n = 4k + 1. Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: (4k + 1)·(4k + 2)·(4k + 3)·(4k + 4). Это произведение делится на 4, так как последний множитель делится на 4;
3) n при делении на 4 дает в остатке 2, т.е. n = 4k + 2. Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: (4k + 2)·(4k + 3)·(4 k+ 4)·(4k + 5). Это произведение делится на 4, так как третий множитель делится на 4;
4) n при делении на 4 дает в остатке 3, т.е. n= 4k + 3. Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: (4k + 3)·(4k + 4)·(4k + 5)·(4k + 6). Это произведение делится на 4, так как второй множитель делится на 4.
Поскольку произведение n·(n + 1)·(n + 2)·(n + 3) содержит произведение двух, трех последовательных натуральных чисел, то оно делится на 2 и на 3.
Задача 23. Доказать, что при любом натуральном значении n.
Решение. Преобразуем данное выражение: (2n – 1)3 – (2n – 1)= = (2n – 1)·(4n2 – 4n + 1 – 1) = 4n·(n – 1)·(2n – 1). Это произведение делится на 4. Кроме того, произведение двух последовательных натуральных чисел n·(n – 1) делится на 2. Таким образом, произведение 4n·(n – 1)·(2n – 1) делится на 8. Осталось показать, что это произведение делится на 3. Для этого рассмотрим три возможности:
1) n делится на 3, т.е. n = 3k. Тогда произведение 4n·(n – 1)·(2n – 1) будет иметь вид: 4·3k·(3k – 1)·(6k – 1). Это произведение делится на 3;
2) n при делении на 3 дает в остатке 1, т.е. n = 3k + 1. Тогда произведение 4n·(n – 1)·(2n – 1) будет иметь вид: 4·(3k + 1)·3k·(6k + 1). Это произведение делится на 3;
3) n при делении на 3 дает в остатке 2, т.е. n = 3k + 2. Тогда произведение 4n·(n – 1)·(2n – 1) будет иметь вид: 4·(3k + 2)·(3k + 2 –1)· (6k + 4 – 1)= 4·(3k + 2)·(3k +1)·(6k+3). Это произведение делится на 3, т.к. последний множитель в нем делится на 3.
Так как 8 и 3 – взаимно простые числа, то , т.е. на 24, что и требовалось доказать.
Задача 24. Доказать, что разность любого трехзначного числа и трехзначного, записанного теми же цифрами, но в обратном порядке делится на 9.
Решение. Представим любое трехзначное число в виде . Нам надо доказать, что . Преобразуем выражение
. Это произведение делится на 9, т.к. первый множитель делится на 9.
Задача 25. Доказать, что четырехзначное число вида делится на 11.
Решение. Представим данное число в виде . Эта сумма делится на 11, т.к. и .
Упражнения для самостоятельной работы
1. Доказать, что произведение пяти последовательных натуральных чисел делится на 5.
2. Доказать, что при любом натуральном n число n3 + 5n делится на 6.
3. Доказать, что при любом натуральном n число n3 – n делится на 24.
4. Доказать, что разность любого четырехзначного числа и четырехзначного числа, записанного теми же цифрами, но в обратном порядке, делится на 9.
5. Доказать, что трехзначное число, записанное тремя одинаковыми цифрами, делится на 37.